Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 14: 1168455, 2023.
Article in English | MEDLINE | ID: covidwho-2293617

ABSTRACT

Even though cancer patients are generally considered more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the mechanisms driving their predisposition to severe forms of coronavirus disease 2019 (COVID-19) have not yet been deciphered. Since metabolic disorders are associated with homeostatic frailty, which increases the risk of infection and cancer, we asked whether we could identify immunometabolic pathways intersecting with cancer and SARS-CoV-2 infection. Thanks to a combined flow cytometry and multiomics approach, here we show that the immunometabolic traits of COVID-19 cancer patients encompass alterations in the frequency and activation status of circulating myeloid and lymphoid subsets, and that these changes are associated with i) depletion of tryptophan and its related neuromediator tryptamine, ii) accumulation of immunosuppressive tryptophan metabolites (i.e., kynurenines), and iii) low nicotinamide adenine dinucleotide (NAD+) availability. This metabolic imbalance is accompanied by altered expression of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs), with a distinctive downregulation of IL-6 and upregulation of IFNγ mRNA expression levels. Altogether, our findings indicate that cancer not only attenuates the inflammatory state in COVID-19 patients but also contributes to weakening their precarious metabolic state by interfering with NAD+-dependent immune homeostasis.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/metabolism , SARS-CoV-2 , Leukocytes, Mononuclear , NAD/metabolism , Tryptophan/metabolism , Neoplasms/metabolism
2.
Oxid Med Cell Longev ; 2022: 4032704, 2022.
Article in English | MEDLINE | ID: covidwho-2038371

ABSTRACT

The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a "proof of principle" for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sirtuins , Cytokines/metabolism , Fibrosis , Humans , Monoamine Oxidase/metabolism , NAD/metabolism , Oxidative Stress , Reactive Oxygen Species , Sirtuins/metabolism
3.
Int J Mol Sci ; 23(8)2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1785754

ABSTRACT

Immune response to SARS-CoV-2 and ensuing inflammation pose a huge challenge to the host's nicotinamide adenine dinucleotide (NAD+) metabolism. Humans depend on vitamin B3 for biosynthesis of NAD+, indispensable for many metabolic and NAD+-consuming signaling reactions. The balance between its utilization and resynthesis is vitally important. Many extra-pulmonary symptoms of COVID-19 strikingly resemble those of pellagra, vitamin B3 deficiency (e.g., diarrhoea, dermatitis, oral cavity and tongue manifestations, loss of smell and taste, mental confusion). In most developed countries, pellagra is successfully eradicated by vitamin B3 fortification programs. Thus, conceivably, it has not been suspected as a cause of COVID-19 symptoms. Here, the deregulation of the NAD+ metabolism in response to the SARS-CoV-2 infection is reviewed, with special emphasis on the differences in the NAD+ biosynthetic pathway's efficiency in conditions predisposing for the development of serious COVID-19. SARS-CoV-2 infection-induced NAD+ depletion and the elevated levels of its metabolites contribute to the development of a systemic disease. Acute liberation of nicotinamide (NAM) in antiviral NAD+-consuming reactions potentiates "NAM drain", cooperatively mediated by nicotinamide N-methyltransferase and aldehyde oxidase. "NAM drain" compromises the NAD+ salvage pathway's fail-safe function. The robustness of the host's NAD+ salvage pathway, prior to the SARS-CoV-2 infection, is an important determinant of COVID-19 severity and persistence of certain symptoms upon resolution of infection.


Subject(s)
COVID-19 , Niacin , Pellagra , Humans , NAD/metabolism , Niacin/pharmacology , Niacinamide/metabolism , Pellagra/drug therapy , Pellagra/etiology , SARS-CoV-2
4.
J Cell Mol Med ; 26(7): 1979-1993, 2022 04.
Article in English | MEDLINE | ID: covidwho-1774827

ABSTRACT

Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+ -dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS-induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1-dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up-regulated the activity of glycogen synthase kinase-3ß (GSK-3ß) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+ /SIRT1/GSK-3ß/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Glycogen Synthase Kinase 3 beta , NAD , NF-E2-Related Factor 2 , Sirtuin 1 , Acute Kidney Injury/metabolism , Endotoxins , Glycogen Synthase Kinase 3 beta/metabolism , Humans , NAD/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sirtuin 1/genetics , Sirtuin 1/metabolism
5.
Trends Immunol ; 43(4): 283-295, 2022 04.
Article in English | MEDLINE | ID: covidwho-1676779

ABSTRACT

NAD+, as an emerging regulator of immune responses during viral infections, may be a promising therapeutic target for coronavirus disease 2019 (COVID-19). In this Opinion, we suggest that interventions that boost NAD+ levels might promote antiviral defense and suppress uncontrolled inflammation. We discuss the association between low NAD+ concentrations and risk factors for poor COVID-19 outcomes, including aging and common comorbidities. Mechanistically, we outline how viral infections can further deplete NAD+ and its roles in antiviral defense and inflammation. We also describe how coronaviruses can subvert NAD+-mediated actions via genes that remove NAD+ modifications and activate the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Finally, we explore ongoing approaches to boost NAD+ concentrations in the clinic to putatively increase antiviral responses while curtailing hyperinflammation.


Subject(s)
COVID-19 , Virus Diseases , Humans , Inflammasomes/metabolism , NAD/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
6.
Biochem J ; 478(23): 4071-4092, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1556088

ABSTRACT

The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.


Subject(s)
Antiviral Agents/therapeutic use , Immunity, Innate , NAD/metabolism , Virus Diseases/drug therapy , ADP-ribosyl Cyclase 1/metabolism , Armadillo Domain Proteins/metabolism , COVID-19/immunology , Cytoskeletal Proteins/metabolism , Humans , NAD/immunology , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Domains , SARS-CoV-2 , Sirtuins/metabolism , Viral Nonstructural Proteins/metabolism , Virus Diseases/immunology , COVID-19 Drug Treatment
7.
Physiol Rev ; 102(1): 339-341, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1398740

ABSTRACT

During the COVID-19 pandemic, efforts have been made worldwide to develop effective therapies to address the devastating immune-mediated effects of SARS-CoV-2. With the exception of monoclonal antibody-mediated therapeutics and preventive approaches such as mass immunization, most experimental or repurposed drugs have failed in large randomized clinical trials (https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline). The worldwide spread of SARS-CoV-2 virus revealed specific susceptibilities to the virus among the elderly and individuals with age-related syndromes. These populations were more likely to experience a hyperimmune response characterized by a treatment-resistant acute lung pathology accompanied by multiple organ failure. These observations underscore the interplay between the virus, the biology of aging, and outcomes observed in the most severe cases of SARS-CoV-2 infection. The ectoenzyme CD38 has been implicated in the process of "inflammaging" in aged tissues. In a current publication, Horenstein et al. present evidence to support the hypothesis that CD38 plays a central role in altered immunometabolism resulting from COVID-19 infection. The authors discuss a critical but underappreciated trifecta of CD38-mediated NAD+ metabolism, aging, and COVID-19 immune response and speculate that the CD38/NAD+ axis is a promising therapeutic target for this disease.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , COVID-19/physiopathology , Membrane Glycoproteins/metabolism , SARS-CoV-2 , ADP-ribosyl Cyclase 1/genetics , Aging , Gene Expression Regulation, Enzymologic , Humans , Membrane Glycoproteins/genetics , NAD/metabolism
8.
Cells ; 10(2)2021 02 21.
Article in English | MEDLINE | ID: covidwho-1110386

ABSTRACT

Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent histone deacetylases that incorporate complex functions in the mechanisms of cell physiology. Mammals have seven distinct members of the SIRT family (SIRT1-7), which play an important role in a well-maintained network of metabolic pathways that control and adapt the cell to the environment, energy availability and cellular stress. Until recently, very few studies investigated the role of SIRTs in modulating viral infection and progeny. Recent studies have demonstrated that SIRT1 and SIRT2 are promising antiviral targets because of their specific connection to numerous metabolic and regulatory processes affected during infection. In the present review, we summarize some of the recent progress in SIRTs biochemistry and their emerging function as antiviral targets. We also discuss the potential of natural polyphenol-based SIRT modulators to control their functional roles in several diseases including viral infections.


Subject(s)
Metabolic Networks and Pathways , Sirtuins/metabolism , Virus Diseases/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Humans , Metabolic Networks and Pathways/drug effects , Models, Molecular , Molecular Targeted Therapy , NAD/metabolism , Sirtuins/analysis , Virus Diseases/drug therapy , Viruses/drug effects , Viruses/metabolism
9.
SLAS Discov ; 26(3): 330-335, 2021 03.
Article in English | MEDLINE | ID: covidwho-913999

ABSTRACT

Saporin, a type I ribosome-inactivating protein from soapwort plant, is a potent protein synthesis inhibitor. Catalytically, saporin is a characteristic N-glycosidase, and it depurinates a specific adenine residue from a universally conserved loop of the major ribosomal RNA (rRNA) of eukaryotic cells. It is well-known that saporin induces apoptosis through different pathways, including ribotoxic stress response, cell signal transduction, genomic DNA fragmentation and RNA abasic lyase (RAlyase) activity, and NAD+ depletion by poly-(ADP)-ribose polymerase hyperactivation. Saporin's high enzymatic activity, high stability, and resistance to conjugation procedures make it a well-suited tool for immunotherapy approaches.In the present study, we focus on saporin-based targeted toxins that may be efficacious therapeutic agents for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our discussed points suggest that saporin may be a strategic molecule for therapeutic knockout treatments and a powerful candidate for novel drugs in the struggle against coronavirus 2019 (COVID-19).


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Saporins/chemistry , Saporins/pharmacology , Antiviral Agents/chemistry , Apoptosis/drug effects , Humans , Immunotoxins/chemistry , Immunotoxins/pharmacology , NAD/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Signal Transduction/drug effects
10.
J Biol Chem ; 295(52): 17986-17996, 2020 12 25.
Article in English | MEDLINE | ID: covidwho-867671

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+ Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.


Subject(s)
COVID-19/metabolism , NAD/immunology , Poly(ADP-ribose) Polymerases/immunology , SARS-CoV-2/immunology , A549 Cells , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Adult , Animals , COVID-19/immunology , Cell Line, Tumor , Female , Ferrets , Humans , Immunity, Innate , Male , Metabolome , Mice , Mice, Inbred C57BL , NAD/metabolism , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/blood , Pyridinium Compounds , SARS-CoV-2/metabolism
11.
Nucleic Acids Res ; 48(17): 9694-9709, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-745778

ABSTRACT

DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as 'trapping'. To understand the molecular nature of 'trapping' in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.


Subject(s)
DNA Damage , DNA Repair/drug effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Binding Sites , Catalytic Domain , Cell Line, Tumor , DNA Repair/physiology , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Indazoles/pharmacology , Kinetics , Molecular Imaging , NAD/metabolism , Piperidines/pharmacology , Poly(ADP-ribose) Polymerases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , X-ray Repair Cross Complementing Protein 1/genetics , X-ray Repair Cross Complementing Protein 1/metabolism
13.
Viruses ; 12(8)2020 07 26.
Article in English | MEDLINE | ID: covidwho-671037

ABSTRACT

COVID-19 is a pandemic health emergency faced by the entire world. The clinical treatment of the severe acute respiratory syndrome (SARS) CoV-2 is currently based on the experimental administration of HIV antiviral drugs, such as lopinavir, ritonavir, and remdesivir (a nucleotide analogue used for Ebola infection). This work proposes a repurposing process using a database containing approximately 8000 known drugs in synergy structure- and ligand-based studies by means of the molecular docking and descriptor-based protocol. The proposed in silico findings identified new potential SARS CoV-2 main protease (MPRO) inhibitors that fit in the catalytic binding site of SARS CoV-2 MPRO. Several selected structures are NAD-like derivatives, suggesting a relevant role of these molecules in the modulation of SARS CoV-2 infection in conditions of cell chronic oxidative stress. Increased catabolism of NAD(H) during protein ribosylation in the DNA damage repair process may explain the greater susceptibility of the elderly population to the acute respiratory symptoms of COVID-19. The molecular modelling studies proposed herein agree with this hypothesis.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , NAD/metabolism , Pandemics , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Aging/metabolism , Binding Sites , COVID-19 , Computer Simulation , Coronavirus 3C Proteases , Coronavirus Infections/metabolism , Coronavirus Infections/virology , DNA Damage , Drug Repositioning , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Docking Simulation , Oxidation-Reduction , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , SARS-CoV-2 , COVID-19 Drug Treatment
14.
J Infect Public Health ; 13(9): 1196-1201, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-598003

ABSTRACT

The aging-associated decline of biological functions represents an important contributor to the increase in morbidity and mortality of human beings. Of these biological functions deterioration; there is a significant decline in the heart function, impairments in the lungs gas exchange, and impairments in the immune function. Many alterations in the body humeral and cellular immune response were observed with ageing process: The circulating pro-inflammatory cytokines are increased, the naive lymphocytes are decreased, the numbers of the antigen-presenting cells areelevated and the overall response is impaired. In addition, ageing is associated with a progressive restriction in the telomere length. Telomeres are located at chromosomes ends and play an essential role in preserving chromosome stability. Also, telomere length is very important to the immune system, because of the high sensitivity of the immune cells to the shortening of telomeres. Telomeres shortening adversely affect the immune cells' function and developments. These adverse changes increased the susceptibility for severe infection, risk of hospitalization, and even death. Elderly COVID-19 patients are at a real risk of complications due to impaired immune function, cytokine storm and defective respiratory function. Administration of anti-ageing immunomodulation factors like Nicotinamide Adenine Dinucleotide NAD+ can minimize these changes through its potent immunomodulation and longevity effects. NAD+ has a direct inhibitory effect on PARP-1 and can prevent pro-inflammatory cytokines over-activation. Increasing the NAD+ level will also result in stabilizing telomeres and this has a positive impact on immune cells function.


Subject(s)
Aging/immunology , Coronavirus Infections/immunology , NAD/immunology , NAD/metabolism , Pneumonia, Viral/immunology , Telomere Shortening/immunology , Autoimmune Diseases/immunology , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Cytokines/immunology , Humans , NAD/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL